Технологические процессы изготовления различных деталей в машиностроении. Федераьное агентство по образованию

2.1 Технологический процесс

2.2 Элементы технологического процесса

2.3 Технологическое оборудование и технологическая оснастка

2.4 Виды технологического планирования

В соответствии с ГОСТ 3.1109-82 «Процессы технологические. Основные термины и определения» технологический процесс – это часть производственного процесса, включающая действия по изменению и последующему определению состояния предмета труда (заготовок, деталей, машины). Изменения качественного состояния касаются изменения формы, размеров, шероховатости поверхности заготовок, их свойств; относительного положения деталей, внешнего вида машины.

Таким образом, технологический процесс обработки данной детали – это часть производственного процесса, непосредственно связанная с изменением формы, размеров, шероховатости поверхности и свойств заготовки с целью получения готовой детали. Изменение физических свойств детали происходит в процессе термической обработки, старения и т.д.

Выделение технологического процесса из общего процесса производства чисто условно. Во время установки, закрепления, измерения детали, снятия крупной детали со станка выполняется тоже часть технологического процесса.

А транспортировка деталей по цеху относится к производственному процессу (т.к. здесь выполняют работу вспомогательный рабочий и транспортный рабочий).

Для выполнения технологического процесса должно быть организованно и оборудовано рабочее место.

Рабочее место – часть площади цеха, которая предназначена для выполнения работы одним рабочим или группой рабочих, на которой размещено технологическое оборудование, инструмент, приспособления, стеллажи для заготовок, деталей и сборочных единиц, подъемно-транспортное оборудование.

Элементы технологического процесса. Для каждого рабочего места должна быть указана последовательность обработки детали. В связи с этим весь процесс механической обработки детали расчленяется на отдельные составные части: технологическая операция, установ, позиция, технологический переход, вспомогательный переход, рабочий ход, вспомогательный ход.

Технологическая операция – законченная часть (рабочая часть) технологического процесса, выполняемая на одном рабочем месте (на одном станке). Выполнять ее могут один или несколько рабочих. Операция характеризуется неизменностью объекта обработки (детали), оборудования (рабочего места) и рабочих исполнителей.

Операции являются основными элементами, на которые расчленяется технологический процесс при его проектировании, калькуляции затрат на изготовление и планирование. Название операций, связанных с механической обработкой обычно дается по названию станка, на котором производят обработку (токарная, фрезерная операция и т.д.). В свою очередь, технологическая операция также состоит из ряда элементов: технологических и вспомогательных переходов, установа, позиций, рабочего хода.



При выполнении технологической операции часто необходимо изменять относительное положение заготовки и инструмента (рабочих органов станка).

Установ – часть технологической операции, выполняемая при неизменном закреплении одной или нескольких обрабатываемых заготовок.

Например, при обработке на токарном станке детали типа втулка должно быть два установа (рисунок 2).

Установ А
1 Установить заготовку 2 Точить торец 1 3 Расточить отверстие 4 Расточить фаску 2
Установ Б
5 Установить заготовку 6 Точить поверхность 3 7 Точить торец 4 8 Расточить фаску 5

Установ А Установ Б

Рисунок 2

При выполнении некоторых технологических операций установленная и закрепленная заготовка должна занимать ряд последовательных положений относительно рабочих органов оборудования с помощью поворотных или перемещающихся устройств, т.е. занимать различные позиции. Понятие «позиция» применяется при использовании многоместных поворотных приспособлений, при обработке на многошпиндельных станках.

Позиция – это фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижных частей оборудования при выполнении определенной части операции.

Отличие установа и позиции – на каждом новом установе объект производства меняет свое положения относительно приспособления, стола, станка, рабочего места, а при смене позиции объект производства сохраняет положение относительно приспособления, в котором он установлен и закреплен.

Основными технологическими элементами, из которых формируется и на которые делиться операция, является переход.

Технологический переход – законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных обрабатываемых поверхностях, технологических режимах и установке.

Рисунок 3

Для многоинструментных станков последовательное точение резцом сначала одной ступени вала, а затем другой будет состоять из двух технологических переходов; если же выполнять обточку этих ступеней одновременно двумя резцами (рисунок 4), то это будет обтачивание в один переход.

Рисунок 4

Обработка одной и той же поверхности заготовки на черновом, а затем чистовом режиме будет состоять из двух технологических переходов, так как изменяется режим резания.

Вспомогательный переход – законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которое не сопровождается изменением формы, размеров и шероховатости поверхностей, но необходимых для выполнения технологического перехода. Примерами вспомогательных переходов являются установка и снятие заготовки перед обработкой, смена инструмента и др.).

Переход состоит из рабочих и вспомогательных ходов.

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки. За каждый рабочий ход снимается один слой металла заданной толщины при неизменном режиме обработки.

Вспомогательный ход – законченная часть технологического перехода, необходимого для подготовки рабочего хода. Таким образом, вспомогательный ход не связан с изменением формы, размеров, шероховатости или свойств заготовки. (Например, перемещение суппорта токарного станка в исходное положение после выполнения обтачки).

Операциям и переходам в технологической документации присваиваются порядковые номера (00, 05, 10, 15 …, чтобы оставить резерв номеров для совершенствования технологического процесса).

Наименование операций определяется типом станка независимо от характера выполняемой работы. Операции формулируются коротко по виду станка: например, токарная, фрезерная, зубофрезерная и т.д. Правило записи и переходов устанавливает ГОСТ 3.1702-79 «Правило записи операций и переходов. Обработка резанием».

Нумерация основных и вспомогательных переходов должна быть сквозной, последовательной в пределах одной операции. Переходы записывают кратко в повелительном наклонении. Допускается полная или сокращенная запись содержания переходов при обработке резанием.

Полную запись следует выполнять при необходимости перечисления всех выдерживаемых размеров. Данная запись характерна для промежуточных переходов, не имеющих графических иллюстраций. В этом случае в записи содержания перехода следует указывать исполнительные размеры с их предельными отклонениями.

Сокращенную запись следует выполнять при условии ссылки на условное обозначение конструктивного элемента обрабатываемого изделия. Данная запись выполняется при достаточной графической информации.

Пример оформления записи представлен в таблице 1.

Таблица 1 – Запись содержания переходов при обработке резанием

Маршрутное описание содержания операций следует применять в единичном и опытном производстве на соответствующих формах маршрутных карт (МК).

Операционное описание содержания операции следует применять в серийном и массовом производстве.

В содержании операции должны быть отражены все необходимые действия, выполняемые в технологической последовательности исполнителем или исполнителями, по обработке изделия или его составных частей на одном рабочем месте. В случае выполнения на данном рабочем месте прочих видов работ (кроме обработки резанием), выполняемых другими исполнителями, их действия также следует отражать в содержании операции. (например, «Контроль ОТК», «Проверить выполнение перехода 2» и т.п.).

Таблица 2 – Примерная запись содержания операций

– ключевое слово, характеризующее метод обработки, выраженное глаголом в неопределенной форме (точить, сверлить, фрезеровать и т.п.);

– наименование обрабатываемой поверхности или ее условное обозначение;

– информация по размерам или их условным обозначениям;

– дополнительная информация, характеризующая количество одновременно или последовательно обрабатываемых поверхностей, характер обработки (например, предварительно, одновременно, по копиру и т.д.).

Технологическое оборудование и технологическая оснастка служат орудиями производства при выполнении технологических процессов.

К технологическому оборудованию относятся металлорежущие станки, прессы, разметочные плиты, испытательные стенды и т.д.

Понятие технологической оснастки включает различные инструменты (режущие, измерительные, вспомогательные, штамповые) и приспособления.

Приспособление – часть технологической оснастки, предназначенной для установки или направления заготовки или инструмента при выполнении технологической операции.

Подготовка технологического оборудования и оснастки к выполнению определенной технологической операции называется наладкой.

Виды технологического планирования. Проектирование технологических процессов обработки деталей для массового и крупносерийного производства можно вести двумя принципиально различными путями. Можно создать технологический процесс обработки детали, содержащий относительно небольшое количество операций и соответственно этому небольшое число типов станков. В противоположность этому возможно создать процесс, состоящий из относительно большого числа, но простых операций и возрастает число станков.

По первому принципу технологический процесс предусматривает концепцию операций, выполняемых на многошпиндельных автоматах, полуавтоматах, агрегатных, многопозиционных, многорезцовых станках, отдельно на каждом станке или на автоматизированных станках, связанных в одну линию. Подобные станки все шире внедряются в производство, особенно широкое применение они получили в автомобиле и тракторостроении.

Метод концентрации операций подразделяется на последовательную концентрацию, параллельную и параллельно–последовательную:

– последовательная концентрация предусматривает обработку поверхностей детали за несколько установов, используют в единичном производстве;

– параллельная концентрация предусматривает одновременную обработку нескольких поверхностей детали;

– параллельно–последовательная концентрация предусматривает одновременную обработку нескольких поверхностей детали за несколько установов.

Параллельная и параллельно–последовательная концентрации применяются для массового и крупносерийного производства, что значительно уменьшает затраты времени обработки деталей. Метод концентрации операций требует применения высокопроизводительных станков специального назначения, что оправдано с экономической стороны лишь при достаточно большом масштабе производства.

Применение принципа концентрации операций позволяет осуществлять большой объем работ и выпуск большего количества продукции при использовании малых производственных площадей и при небольшом числе рабочих.

По второму принципу технологический процесс дифференцируется (расчленяется) на элементарные операции с примерно одинаковым временем исполнения (тактом) или кратным такту. В связи с этим станки здесь применяются специальные и узкоспециализированные. Принцип дифференциации операций требует рабочих более низкой квалификации, чем при принципе концентрации операций.

Транскрипт

1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. М. Никитенко, Ю. А. Курганова Технологические процессы в машиностроении Текст лекций для студентов машиностроительных специальностей Ульяновск 2008

2 УДК (075.8) ББК г я 7 Н 93 Рецензенты: генеральный директор, канд.техн.наук, ОАО «Ульяновский НИАТ» В. А. Марковцев, главный специалист прессовых работ ОАО «УАЗ» А. Г. Шанов Утверждено редакционно-издательским советом Ульяновского государственного технического университета в качестве текста лекций Никитенко, В. М. Н 93 Технологические процессы в машиностроении: текст лекций / В.М. Никитенко, Ю. А. Курганова. Ульяновск: УлГТУ, с. ISBN Пособие содержит ряд разделов, необходимых для ознакомления студентов с конструкционными материалами, которые служат для изготовления машин и других технических изделий. В пособии рассмотрены технологические способы производства черных и цветных металлов, изготовление заготовок и деталей машин из металлов и неметаллических материалов литьем, обработкой давлением, сваркой, резанием и другими способами. Для студентов вузов машиностроительных специальностей. Работа подготовлена на кафедре «Материаловедение и обработка металлов давлением» УДК (075.8) ББК 34.4 г я7 ISBN В. М. Никитенко, Ю. А. Курганова, Оформление. УлГТУ, 2008

3 ОГЛАВЛЕНИЕ Введение 5 Раздел 1. Производственный процесс изготовления машины. Конструкционные материалы Глава 1. Теоретические основы технологии машиностроения Лекция 1. Понятие о производственном и технологическом процессах 7 Лекция 2. Служебное назначение машины. Качество машины. 11 Точность деталей. Точность обработки Лекция 3. Рабочая документация технологического процесса 22 Глава 2. Конструкционные материалы, применяемые в машиностроении и приборостроении Лекция 4. Понятие о внутреннем строении металлов и сплавов 25 Лекция 5. Основные свойства металлов и сплавов 34 Лекция 6. Стали. Чугуны. Цветные металлы и сплавы 36 Лекция 7. Неметаллические материалы. Композиционные материалы. 50 Полимеры. Области применения различных материалов Лекция 8. Основы термической обработки 53 Раздел 2. Структура и продукция металлургического и литейного производства Глава 3. Металлургия металлов Лекция 9. Производство чугуна. Производство стали 62 Лекция 10. Особенности производства цветных металлов 68 Глава 4. Технологические процессы литья Лекция 11. Основы литейного производства. Классификация литых заготовок. Способы литья 74 Раздел 3.Технологические процессы обработки пластическим деформированием Глава 5.Основы теории обработки металлов давлением (ОМД) Лекция 12. Сущность и основные способы обработки металлов 88 давлением Лекция 13. Нагрев металла и нагревательные устройства 91 Лекция 14. Технологические операции ОМД 93 Лекция 15. Технико-экономические показатели и критерии выбора рациональных способов ОМД 108 Раздел 4. Сварка, пайка, склеивание материалов Глава 6. Сварочное производство Лекция 16. Сварка давлением 110 3

4 Лекция17. Сварка плавлением 115 Лекция 18. Сварные соединения и швы, сварочные материалы 122 Глава 7. Пайка материалов Лекция19. Сущность процесса и материалы для пайки 129 Лекция 20. Восстановление и упрочнение деталей наплавкой 132 Глава 8. Клеевые соединения Лекция 21. Получение неразъемных соединений склеиванием 135 Раздел 5. Технологические процессы обработки резанием Глава 9. Основы технологии формообразования поверхностей деталей машин и режущие инструменты Лекция 22. Режим резания, геометрия срезаемого слоя, шероховатость 137 поверхности. Лекция 23. Классификация металлорежущих станков 142 Лекция 24. Обработка на металлорежущих станках 144 Лекция 25. Особенности обработки заготовок электрофизическими и электрохимическими методами 160 Глава 10. Отделочная обработка поверхностей Лекция 26. Методы отделочной обработки поверхностей 172 Раздел 6. Производство деталей из неметаллических материалов и металлических порошков Глава 11. Способы изготовления композиционных материалов Лекция 27 Общие сведения о пластмассах. Переработка пластмасс в изделия 181 Лекция 28. Производство деталей из жидких полимеров. Сварка и склеивание 183 пластмасс Лекция 29. Производство изделий из резины 189 Лекция 30. Производство деталей из металлических порошков 191 Лекция 31. Получение материалов на основе полимерных веществ 195 Раздел 7. Технологические процессы сборки Глава 12. Особенности технологического процесса сборки Лекция 32. Содержание процесса сборки и структуры сборочных 200 единиц. Контроль в машиностроении 211 Заключение Библиографический список 212 4

5 Введение Разработка нового изделия в машиностроении сложная комплексная задача, связанная не только с достижением требуемого технического уровня этого изделия, но и с приданием его конструкций таких свойств, которые обеспечивают максимально возможное снижение затрат труда, материалов и энергии на его разработку, изготовление, эксплуатацию и ремонт. Решение этой задачи определяется творческим содружеством создателей новой техники конструкторов и технологов и их взаимодействием на этапах разработки конструкции с его изготовителями и потребителями. В реализации требуемых свойств изделий машиностроения определяющая роль принадлежит методам и средствам производства этих изделий. Детали, узлы и другие компоненты машин чрезвычайно разнообразны, и для их изготовления необходимы материалы с самыми различными свойствами, а также технологические процессы, основанные на разных принципах действия. Многолетняя практика показывает, что в современном машиностроительном производстве не существует универсальных методов обработки, в равной мере эффективных для изготовления различных деталей из разных материалов. Каждый метод обработки имеет свою конкретную область применения, причем эти области нередко пересекаются так, что одна и та же деталь может быть изготовлена различными методами. Поэтому выбор способа изготовления деталей с учетом конкретных производственных условий связан с необходимостью выбора оптимального метода из большого числа возможных, исходя из заданных технико-экономических ограничений как по параметрам изготавливаемой детали, так и по условиям эксплуатации оборудования и инструмента. Целью изучения дисциплины является ознакомление студентов с основами знаний о современном машиностроительном производстве: с видами материалов и способов их производства, с технологическими процессами изготовления деталей машин и сборочными работами. Текст лекций содержит 7 разделов. В первом разделе излагаются основы производственного процесса и его составляющие. Рассматриваются кристаллизация и строение металлов и сплавов, способы их термической обработки, описаны превращения, протекающие в сплавах при их нагреве и охлаждении. Уделено внимание сплавам на основе цветных металлов, свойствам сталей, методам их улучшения, а также неметаллическим, порошковым и композиционным материалам, которые являются перспективными. Во втором разделе рассмотрены основы металлургического и литейного процесса. Внимание сконцентрировано на методах получения и физикохимической переработке конструкционных материалов. Рассмотрены основы современной технологии литейного производства, специальные способы литья и применяемое оборудование для их выплавки. Третий раздел посвящен обработке металлов давлением. Даны представления о влиянии процессов пластического деформирования на структуру металла, на его механические свойства. 5

6 В четвертом разделе рассмотрены вопросы сварочного производства, процессы пайки и получение неразъемных клеевых соединений. Физические основы сварки, ее способы, различные виды оборудования. В пятом разделе описаны основные процессы, протекающие при обработке металлов резанием. Приведены краткие сведения о металлорежущих станках, инструментах, работах, выполняемых на этом оборудовании. Здесь же рассмотрены вопросы электрофизической и электрохимической обработки. В шестом разделе рассматривают получение материалов на основе полимеров. В седьмом разделе рассмотрены технологические процессы сборки, вопросы контроля в машиностроении. Развитие и совершенствование любого производства в настоящее время зависит от знаний инженера и от того, насколько он владеет методами изготовления деталей машин и их сварки. Важным направлением научно - технического процесса является создание и широкое применение новых конструкционных материалов для того, чтобы повысить технический уровень и надежность оборудования с учетом экономических показателей, для этого инженер должен обладать глубокими технологическими знаниями. 6

7 Раздел 1. Производственный процесс изготовления машины. Конструкционные материалы Глава 1. Теоретические основы технологии машиностроения Лекция 1. Понятие о производственном и технологическом процессах Все то, что имеет общество для удовлетворения своих потребностей, связано с использованием или переработкой продуктов природы. Последнее неразрывно связано с необходимостью реализации тех или иных производственных процессов, т. е. в конечном итоге с затратами человеческого труда. В производственный процесс входят все этапы переработки продуктов природы в предметы (машины, строения, материалы и т. п.), необходимые человеку. Так, например, для создания станка необходимо добыть и переработать руду, затем из металла создать заготовки будущих деталей станка, осуществлять этап их переработки, а затем сборки. При создании машины обычно ограничиваются рассмотрением производственных процессов, реализуемых на машиностроительном предприятии. Изделием в машиностроении называют любой предмет или набор предметов, подлежащих изготовлению. Изделием может быть любая машина или ее элементы в сборе, остальные детали в зависимости от того, что является продуктом конечной стадии данного производства. Например, для станкостроительного завода изделием являются станок или автоматическая линия, для завода изготовления крепежных деталей болт, гайка и т. п. Производственным процессом в машиностроении называют совокупность всех этапов, которые проходят полуфабрикаты на пути их превращения в готовую продукцию: металлообрабатывающие станки, литейные машины, кузнечно-прессовое оборудование, приборы и другие. На машиностроительном заводе производственный процесс включает: подготовку и обслуживание средств заготовок, их хранение; различные виды обработки (механическую, термическую и т.д.); сборку изделий и их транспортирование, отделку, окраску и упаковку, хранение готовой продукции. Наилучший результат дает всегда тот производственный процесс, в котором все этапы строго организационно согласованы и экономически обоснованы. Технологическим процессом называют часть производственного процесса, содержащую действия по изменению и последующему определению состояния предмета производства. В результате выполнения технологических процессов изменяются физико-химические свойства материалов, геометрическая форма, размеры и относительное положение элементов деталей, качество поверхности, внешний вид объекта производства и т.д. Технологический процесс выполняют на рабочих местах. Рабочее место представляет собой часть 7

8 цеха, в котором размещено соответствующее оборудование. Технологический процесс состоит из технологических и вспомогательных операций (например, технологический процесс обработки валика состоит из токарных, фрезерных, шлифовальных и других операций). Производственный состав машиностроительного завода. Машиностроительные заводы состоят из отдельных производственных единиц, называемых цехами, и различных устройств. Состав цехов, устройств и сооружений завода определяется объектом выпуска продукции, характером технологических процессов, требованиями к качеству изделий и другими производственными факторами, а также в значительной мере степенью специализации производства и кооперирования завода с другими предприятиями и смежными производствами. Специализация предполагает сосредоточение большого объема выпуска строго определенных видов продукции на каждом предприятии. Кооперирование предусматривает обеспечение заготовками (отливками, поковками, штамповками), комплектующими агрегатами, различными приборами и устройствами, изготовляемыми на других специализированных предприятиях. Если проектируемый завод будет получать отливки в порядке кооперирования, то в его составе не будет литейных цехов. Например, некоторые станкостроительные заводы получают отливки со специализированного литейного завода, снабжающего потребителей литьем в централизованном порядке. Состав энергетических и санитарно-технических устройств завода также может быть различными в зависимости от возможности кооперирования с другими промышленными и коммунальными предприятиями по снабжению электроэнергией, газом, паром, сжатым воздухом, в части устройства транспорта, водопровода, канализации и т. д. Дальнейшее развитие специализации и в связи с этим широкое кооперирование предприятий значительно отразятся на производственной структуре заводов. Во многих случаях в составе машиностроительных заводов не предусматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению крепежных деталей и т. д., так как заготовки, метизы и другие детали поставляются специализированными заводами. Многие заводы массового производства в порядке кооперирования со специализированными заводами также могут снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых машин; например, автомобильные и тракторные заводы готовыми двигателями и др. Состав машиностроительного завода можно разделить на следующие группы: 1) заготовительные цехи (чугунолитейные, сталелитейные, литейные цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечноштамповые и др.); 8

9 2) обрабатывающие цехи (механические, термические, холодной штамповки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и др.); 3) вспомогательные цехи (инструментальные, ремонтно-механические, электроремонтные, модельные, экспериментальные, испытательные и др.); 4) складские устройства (для металла, инструмента, формовочных и шихтовых материалов, принадлежностей и разных материалов для готовых изделий, топлива, моделей и др.); 5) энергетические устройства (электростанция, теплоэлектроцентраль, компрессорные и газогенераторные установки); 6) транспортные устройства; 7) санитарно-технические устройства (отопление, вентиляция, водоснабжение, канализация); 8) общезаводские учреждения и устройства (центральная лаборатория, технологическая лаборатория, центральная измерительная лаборатория, главная контора, проходная контора, медицинский пункт, амбулатория, устройства связи, столовая и др.). Технологической операцией называют законченную часть технологического процесса, выполняемую на одном рабочем месте одним или несколькими рабочими, или одной или несколькими единицами автоматического оборудования. Операция охватывает все действия оборудования и рабочих над одним или несколькими совместно обрабатываемыми (собираемыми) объектами производства. Операция является основным элементом производственного планирования и учета. Трудоемкость производственного планирования и учета. Трудоемкость технологического процесса, число рабочих, обеспечение оборудованием и инструментом определяют по числу операций. К вспомогательным операциям относят контроль деталей, их транспортирование, складирование и другие работы. Технологические операции делят на технологические и вспомогательные переходы, а также на рабочие и вспомогательные ходы. Основным элементом операции является переход. Технологический переход законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой или соединяемых при сборке. При обработке резанием технологический переход представляет собой процесс получения каждой новой поверхности или сочетания поверхностей режущим инструментом. Обработку осуществляют в один или несколько переходов (сверление отверстия обработка в один переход, а получение отверстия тремя последовательно работающими инструментами: сверлом, зенкером, разверткой - обработка в три перехода). Переходы могут совмещаться во времени, например, обработка сразу трех отверстий тремя расточными оправками, или фрезерование трех сторон корпусной детали тремя торцевыми фрезами. 9

10 Вспомогательный переход законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и качества поверхностей, но необходимы для выполнения технологического перехода (например, установка заготовки, ее закрепление, смена режущего инструмента). Переходы могут быть совмещены во времени за счет одновременной обработки нескольких поверхностей детали несколькими режущими инструментами. Их можно выполнять последовательно, параллельно (например, одновременная обработка нескольких поверхностей не агрегатных или многорезцовых станках) и параллельно-последовательно. Рабочим ходом называют законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки. При обработке резанием в результате каждого рабочего хода с поверхности или сочетания поверхностей заготовки снимается один слой материала. Для осуществления обработки заготовку устанавливают и закрепляют с требуемой точностью в приспособлении или на станке, при обработке - на сборочном стенде или другом оборудовании. На станках, обрабатывающих тела вращения, под рабочим ходом понимают непрерывную работу инструмента, например на токарном станке снятие резцом одного слоя стружки непрерывно, на строгальном станке снятие одного слоя металла по всей поверхности. Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений), также применяют понятие рабочего хода, как и при снятии стружки. Вспомогательный ход законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода. Все действия рабочего, совершаемые им при выполнении технологической операции, расчленяются на отдельные приемы. Под приемом понимают законченное действие рабочего. Установом называют часть операции, выполняемую при одном закреплении заготовки (или нескольких одновременно обрабатываемых) на станке или в приспособлении, или собираемой сборочной единицы, так, например, обтачивание вала при закреплении в центрах - первый установ; обтачивание вала после его поворота и закрепления в центрах для обработки другого конца второй установ. При каждом повороте детали на какой-либо угол создается новый установ (при повороте детали необходимо указывать угол поворота: 45, 90, и т. д.) Установленная и закрепленная заготовка может изменять свое положение на станке относительно его рабочих органов под воздействием перемещающих или поворотных устройств, занимая новую позицию. Позицией называется каждое отдельное положение заготовки, занимаемое ею относительно станка при неизменном ее закреплении. 10

11 Производственная программа машиностроительного завода содержит номенклатуру изготавливаемых изделий (с указанием типов и размеров), количество изделий каждого наименования, подлежащих выпуску в течение года, перечень и количество запасных деталей к выпускаемым изделиям. Единичное производство характеризуется выпуском изделий широкой номенклатуры в малом количестве и единичных экземплярах. Изготовление изделий либо совсем не повторяется, либо повторяется через неопределенное время, например: выпуск экспериментальных образцов машин, крупных металлорежущих станков, прессов и т. д. В серийном производстве изделия изготовляют по неизменным чертежам партиями и сериями, которые повторяются через определенные промежутки времени. В зависимости от числа изделий в серии серийное производство разделяют на мелко-, средне- и крупносерийное. Продукцией серийного производства являются машины, выпускаемые в значительном количестве: металлорежущие станки, насосы, компрессоры и т. д. В этом производстве используют высокопроизводительное, универсальное, специализированное и специальное оборудование, универсальные, переналаживаемые быстродействующие приспособления, универсальный и специальный инструмент. Широко применяют станки с ЧПУ, многоцелевые станки. Оборудование располагают по ходу технологического процесса, а часть его по типам станков. На большинстве рабочих мест выполняют периодически повторяющиеся операции, В серийном производстве цикл изготовления продукции короче, чем в единичном производстве. Массовым называется производство большого числа изделий одного и того же типа по неизменным чертежам в течение длительного времени. Продукцией массового производства являются изделия узкой номенклатуры и стандартного типа. В этом производстве на большинстве рабочих мест выполняют только одну закрепленную за ними постоянно повторяющуюся операцию. Оборудования в поточных линиях располагают по ходу технологического процесса. В массовом производстве широко используют специальные станки, станкиавтоматы, автоматические линии и заводы, специальные режущие измерительные инструменты и различные средства автоматизации. Лекция 2. Служебное назначение машины. Качество машины. Точность деталей. Точность обработки Служебное назначение машины. Любая машина создается для удовлетворения определенной потребности человека, которая находит отражение в служебном назначении машины. Создание любой машины является следствием потребности того или иного технологического процесса. Такой подход предопределяет необходимость в четком определении тех функций, которые должна выполнять данная машина, т. е. в определении ее служебного назначения. 11

12 Машина может быть определена как устройство, выполняющее целесообразные механические движения, служащие для преобразования полуфабрикатов в предметы (изделие) или действия необходимые человеку. Технологической машиной называется машина, в которой преобразование материала состоит в изменении его формы, размеров и свойств. К этому классу машин относятся металлорежущие станки, кузнечно-прессовое оборудование и др. Под служебным назначением машины понимается максимально уточненная и четко сформулированная задача, для решения которой предназначается машина. Однако и приведенная формулировка недостаточно развернута, чтобы создать и выпустить станок, отвечающий своему служебному назначению. Ее необходимо дополнить такими данными, как характер и точность заготовок, которые должны поступать на станок, материал режущего инструмента, необходимость или отсутствие необходимости обработки полученных поверхностей на валиках и т. д. В ряде случаев необходимо указать те условия, в которых должны работать машины; например, возможные колебания температуры, влажности и т. д. Опыт машиностроения показывает, что каждая ошибка, допущенная при выявлении и уточнении служебного назначения машины, а также и ее механизмов, не только приводит к созданию недостаточно качественной машины, но и вызывает лишние затраты труда на ее освоение. Нередко недостаточно глубокое изучение и выявление служебного назначения машины порождает излишне жесткие, экономически неоправданные требования к точности и другим показателям качества машины. Каждая машина, как и ее отдельные механизмы, выполняет свое служебное назначение при помощи ряда поверхностей или их сочетаний, принадлежащих деталям машины. Условимся называть такие поверхности или их сочетания исполнительными поверхностями машины или ее механизмов. Действительно, сочетания конических поверхностей переднего конца шпинделя и пиноли задней бабки определяют положение обрабатываемой на станке детали, установленной в центрах, поверхности которых входят в комплекс исполнительных поверхностей. На фланец переднего конца шпинделя монтируется поводковый патрон, через который обрабатываемой детали сообщается вращательное движение. Поверхности резцедержателя определяют положение резцов относительно обрабатываемой детали и непосредственно передают им необходимые для обработки движения. Исполнительными поверхностями зубчатой передачи, рассматриваемой как механизм, являются сочетания боковых рабочих поверхностей зубьев пары зубчатых колес, работающих совместно. Исполнительными поверхностями двигателя внутреннего сгорания, рассматриваемого как механизм, служащего для преобразования тепловой энергии в механическую, являются поверхности поршня и рабочего цилиндра и т. д. 12

13 Основы разработки конструктивных форм машины и ее деталей. После того как выявлено и четко сформулировано служебное назначение машины, выбирают исполнительные поверхности или заменяющие их сочетания поверхностей надлежащей формы. Затем выбирается закон относительного движения исполнительных поверхностей, обеспечивающий выполнение машиной ее служебного назначения, разрабатывается кинематическая схема машины и всех составляющих ее механизмов. На следующем этапе рассчитываются силы, действующие на исполнительных поверхностях машины, и характер их действия. Используя эти данные, рассчитывают величину и характер сил, действующих на каждом из звеньев кинематических цепей машины и её механизмов с учетом действия сил сопротивления (трения, инерции, веса и т. д.). Зная служебное назначение каждого звена кинематических цепей машины или ее механизмов, закон движения, характер, величину действующих на него сил и ряд других факторов (среда, в которой должны работать звенья и т. д.), выбирают материал для каждого звена. Путем расчета определяются конструктивные формы, т. е. превращают их в детали машины. Для того чтобы детали, несущие исполнительные поверхности машины и ее механизмов, а также и все другие, выполняющие функции звеньев ее кинематических цепей, двигались в соответствии с требуемым законом их относительного движения и занимали одни относительно других требуемые положения, их соединяют при помощи различного рода других деталей в виде корпусов, станин, коробок, кронштейнов и т. д., которые называют базирующими деталями. Конструктивные формы каждой детали машины и ее механизмов создаются, исходя из ее служебного назначения в машине, путем ограничения необходимого количества выбранного материала различными поверхностями и их сочетаниями. С точки зрения технологии изготовления будущей детали, например, валика, использование цилиндрических поверхностей более экономично, поэтому для опорных частей валика выбирают две цилиндрические поверхности. С точки технологии механической обработки валика, его целесообразно было бы сделать цилиндрическим одного диаметра на всю длину. Однако с точки зрения монтажа зубчатых колес и их обработки такая конструкция была бы менее экономичной. Исходя из этого, останавливаемся для данных производственных условий на конструкции ступенчатого валика. Выбор поверхностей, которые должны ограничить кусок материала, и придание ему требуемой формы еще не означает, что валик будет правильно выполнять свое служебное назначение в машине. Поверхности, относительно которых определяется положение других поверхностей, принято называть базирующими или, короче, базами. Следовательно, при разработке конструктивных форм детали вначале необходимо создать поверхности, принимаемые за ее базы, тогда все остальные 13

14 поверхности должны занять относительно их положение, требуемое служебным назначением детали в машине. Деталь является пространственным телом, поэтому, у нее должно быть в общем случае, как это следует из теоретической механики, три базирующие поверхности, представляющие собой систему координат. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей, образующих конструктивные формы детали. Таким образом, каждая деталь должна иметь свои системы координат. Как правило, в качестве координатных плоскостей обычно используются поверхности основных баз и их оси. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей детали, при помощи которых создаются ее конструктивные формы (вспомогательные базы, исполнительные и свободные поверхности). Из изложенного следует, что создание конструктивных форм деталей следует разрабатывать, учитывая из их служебное назначение и требования технологии их наиболее экономичного изготовления и монтажа. В соответствии с этим под деталью следует понимать необходимое количество выбранного материала, ограниченного рядом поверхностей или их сочетаний, расположенных одни относительно других (выбранных за базы), исходя из служебного назначения детали в машине и наиболее экономичной технологии изготовления и монтажа. Построение машины осуществляется путем соединения составляющих ее деталей. Базирующая деталь машины должна соединять и обеспечивать требуемые служебным назначением машины относительные положения (расстояния и повороты) всех составляющих машину сборочных единиц и деталей. Соединение деталей и сборочных единиц осуществляется путем приведения в соприкосновение поверхностей основных баз присоединяемой сборочной единицы или детали с вспомогательными базами детали, к которой они присоединяются (базирующей). Следовательно, поверхности основных баз присоединяемой детали и вспомогательных баз присоединяемой детали и вспомогательных баз базирующей детали, к которой они присоединяются, являются негативными. Это очень важное обстоятельство, играющее большую роль при разработке конструктивных форм деталей, разработке технологии их изготовления и конструирования приспособлений. Необходимость в правильных геометрических формах поверхностей деталей появляется тогда, когда детали оставляется хотя бы одна степень свободы для выполнения служебного назначения в машине. В подобных случаях между поверхностями основных баз такой детали и вспомогательных баз детали, к которой они присоединяются, возникает трение, порождающее износ сопряженных поверхностей. Износ вызывает, в свою очередь, изменение размеров и положения поверхностей основных и вспомогательных баз сопрягаемых деталей, а, следовательно, изменение расстояний и поворотов этих поверхностей (положения), а тем самым и относительного по- 14

15 ложения и движения деталей. В конечном итоге машина или ее механизмы не смогут выполнять экономично, а иногда и физически свое служебное назначение. Поэтому в дополнение к необходимости получения поверхностей деталей правильной геометрической формы добавляется требование обеспечения требуемой степени их шероховатости и качества поверхностного слоя материала. Одной из задач технологии машиностроения является экономичное получение деталей, имеющих требуемую точность размеров, поворота, геометрической формы поверхностей, требуемую их шероховатость и качество поверхностного слоя материала. Для этого исполнительные поверхности основных и вспомогательных баз деталей, как правило, подвергают обработке. Качество машины. Для того чтобы машина экономично выполняла свое служебное назначение, она должна обладать необходимым для этого качеством. Под качеством машины понимается совокупность ее свойств, определяющих соответствие ее служебному назначению и отличающих машину от других. Качество каждой машины характеризуется рядом методически правильно отработанных показателей, на каждый из которых должна быть установлена количественная величина с допуском на ее отклонения, оправдываемые экономичностью выполнения машиной ее служебного назначения. Система качественных показателей с установленными на них количественными данными и допусками, описывающая служебное назначение машины, получила название технических условий и норм точности на приемку готовой машины. К основным показателям качества машины относятся: стабильность выполнения машиной ее служебного назначения; качество выпускаемой машиной продукции, долговечность физическая, т. е. способность сохранять первоначальное качество во времени; долговечность моральная, или способность экономично выполнять служебное назначение во времени; производительность, безопасность работы; удобство и простота обслуживания управления; уровень шума, коэффициент полезного действия, степень механизации и автоматизации и т. д. Основные технические характеристики и качественные показатели некоторых машин и составляющих их частей, выпускаемых в больших количествах, стандартизованы. Точность обработки. Под точностью обработки понимают степень соответствия обработанной детали техническим требованиям чертежа в отношении точности размеров, формы и расположения поверхностей. Все детали, у которых отклонения показателей точности лежат в пределах, установленных допусков, пригодны для работы. В единичном и мелкосерийном производстве точность деталей получают методом пробных рабочих ходов, т. е. последовательным снятием слоя припуска, сопровождаемым соответствующими измерениями. В условиях мелкосерийного и среднесерийного производства применяют обработку с настройкой станка по первой пробной детали партии или по эталонной детали. В крупносерийном и массовом производствах точность детали обеспечивают методом 15

16 автоматического получения размеров на предварительно настроенных станкахавтоматах, полуавтоматах или автоматических линиях. В условиях автоматизированного производства в станок встраивают наладчики, представляющий собой измерительное и регулировочное устройство, которое в случае выхода размера обрабатываемой поверхности за пределы поля допуска автоматически вносит поправку в систему «станок-приспособление инструмент-заготовка» (технологическая система) и подналаживают ее на заданный размер. На станках, выполняющих обработку за несколько рабочих ходов (например, на круглошлифовальных), применяют устройства активного контроля, которые измеряют размер детали в процессе обработки. При достижении заданного размера устройства автоматически отключают подачу инструмента. Применение этих устройств повышает точность и производительность обработки путем уменьшения времени на вспомогательные операции. Эта цель достигается также путем оснащения металлорежущих станков системами адаптивного управления процессом обработки. Система состоит из датчиков получения информации о ходе обработки и регулирующих устройств, вносящих в нее поправки. На точность обработки влияют: погрешности станка и его износ; погрешность изготовления инструментов, приспособлений и их износ; погрешность установки заготовки на станке; погрешности, возникающие при установке инструментов и их настройке на заданный размер; деформации технологической системы, возникающие под действием сил резания; температурные деформации технологической системы; деформация заготовки под действием собственной массы, сил зажима и перераспределения внутренних напряжений; погрешности измерения, которые обусловлены неточностью средств измерения, их износом и деформациями и др. Эти факторы непрерывно изменяются в процессе обработки, вследствие чего появляются погрешности обработки. Собственная точность станков (в ненагруженном состоянии) регламентирована стандартом для всех типов станков. При эксплуатации происходит изнашивание станка, в результате чего собственная точность его снижается. Износ режущего инструмента влияет на точность обработки в партии заготовок при одной настройке станка (например, при растачивании отверстий износ резца приводит к появлению конусообразности). Погрешности, допущенные при изготовлении и износе приспособления, приводят к неправильной установке заготовки и являются причинами появления погрешностей обработки. В процессе обработки под действием сил резания и создаваемых ими моментов элементы технологической системы изменяют относительное пространственное положение из-за наличия стыков и зазоров в парах сопрягаемых деталей и собственных деформаций деталей. В результате возникают погрешности обработки. Упругая деформация технологической системы зависит от силы резания и жесткости этой системы. Жесткостью J технологической системы называют отношение приращения нагрузки Р к вызванному им приращению У мм, упругого обжатия: J = Р/ У 16

17 Применительно к станку под жесткостью понимают его способность сопротивляться появлению упругих обжатий под действием сил резания. Как правило, жесткость станка определяет экспериментальным путем. Процесс резания сопровождается выделением теплоты. В результате изменяется температурный режим технологической системы, что приводит к дополнительным, пространственным перемещениям элементов станка вследствие изменения линейных размеров деталей и появлению погрешностей обработки. Заготовки, имеющие малую жесткость (L/D>10, где L длина заготовки; D ее диаметр), под действием сил резания и их моментов деформируются. Например, длинный вал небольшого диаметра при обработке на токарном станке в центрах прогибается. В результате диаметр на концах вала получают меньше, чем в середине, т. е. возникает бочкообразность. В отливках и кованых заготовках в результате неравномерного остывания возникают внутренние напряжения. При резании вследствие снятия верхних слоев материала заготовки происходят перераспределение внутренних напряжений и ее деформация. Для уменьшения напряжений отливки подвергают естественному или искусственному старению. Внутренние напряжения появляются в заготовке при термической обработке, холодной правке и сварке. Под достижимой точностью понимают точность, которая может быть обеспечена при обработке заготовки рабочим высокой квалификации на станке, находящемся в нормальном состоянии, при максимально возможных затратах труда и времени на обработку. Экономическая точность такая точность, для обеспечения которой затраты при данном способе обработки будут меньше, чем при использовании другого способа обработки той же поверхности. Точность деталей. Точность деталей это степень приближения формы детали к геометрически правильному ее прототипу. За меру точности детали принимают значения допусков и отклонений от теоретических значений показателей точности, которыми она характеризуется. Стандартами, введенными в действие в качестве государственных стандартов, а также ГОСТ, ГОСТ, ГОСТ установлены следующие показатели точности: 1) точность размеров, т. е. расстояний между различными элементами деталей и сборочных единиц; 2) отклонение формы, т. е. отклонение (допуск) формы реальной поверхности или реального профиля от формы номинальной поверхности или номинального профиля; 3) отклонение расположения поверхностей и осей детали, т. е. отклонение (допуск) реального расположения рассматриваемого элемента от его номинального расположения. Шероховатость поверхности не входит в отклонение формы. Иногда допускается нормировать отклонение формы, включая шероховатость поверхности. Волнистость включается в отклонение формы. В обоснованных случаях допускается нормировать отдельно волнистость поверхности или часть отклонения формы без учета волнистости. Точность размеров детали характеризуется допуском Т, который определяют как разность двух предельных (наибольшего и наименьшего) допустимых 17

18 размеров. Величина допуска Т зависит от размера квалитета. Например, размер, выполняемый по 7-му квалитету, более точный, чем такой же размер, выполненный по 8-му или 10-му квалитету. Точность размеров на чертежах проставляют условными обозначениями поля допуска (40Н7; 50К5) или предельных отклонений в миллиметрах, или условными обозначениями полей допусков и отклонений. Точность размеров грубее 13-го квалитета оговаривают в технических требованиях, где указывают, по какому квалитету их следует выполнять. Например, «неуказанные предельные отклонения размеров: отверстий Н14, валов h 14». Точность формы характеризуется допуском Т или отклонениями от заданной геометрической формы. Стандарт рассматривает допуски и отклонения двух форм поверхностей; цилиндрических и плоских. Количественно отклонение формы оценивают наибольшим расстоянием от точек реальной поверхности (профиля) до прилегающей поверхности (профилю). Допуск формы наибольшее допустимое значение отклонения формы. Отклонения формы отсчитывают по нормали от прилегающих прямых, плоскостей, поверхностей и профиля. Отклонение от плоскостности наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка. Частными видами отклонений от плоскости являются выпуклость и вогнутость. Отклонение формы цилиндрических поверхностей характеризуются допуском цилиндричности, который включает отклонение от круглости поперечных сечений и профиля продольного сечения. Частными видами отклонений от округлости являются овальность и огранка. Отклонения профиля в продольном сечении характеризуются допуском прямолинейности образующих и разделяются на конусообразность, бочкообразность и седлообразность. Точность расположения осей характеризуется отклонениями расположения. При оценке отклонений расположения отклонения формы рассматриваемых и базовых элементов исключают из рассмотрения. При этом реальные поверхности (профили) заменяют прилегающими, а за оси плоскости симметрии и центры реальных поверхностей или профилей принимают оси, плоскости симметрии и центры прилегающих элементов. Отклонение от параллельности плоскостей разность наибольшего и расстояний между плоскостями в пределах нормируемого участка. Отклонение от параллельности осей (или прямых) в пространстве геометрическая сумма отклонений от параллельности проекций осей (прямых) в двух взаимно перпендикулярных плоскостях; одна из этих плоскостей является общей плоскостью осей. Отклонение от перпендикулярности плоскостей отклонение угла между плоскостями от прямого угла (90), выраженное в линейных единицах на длине нормируемого участка. Отклонение от соосности относительно общей оси наибольшее рас- 18

19 стояние (1, 2,...) между осью рассматриваемой поверхности вращения и общей осью двух или нескольких поверхностей вращения на длине нормируемого участка. Кроме термина «отклонение от соосности», в отдельных случаях может применяться понятие отклонения от концентричности расстояние в заданной плоскости между центрами профилей (линий), имеющих номинальную форму окружности. Допуск концентричности Т определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базового элемента это наибольшее расстояние между плоскостью симметрии (осью) рассматриваемого элемента (или элементов) и плоскостью симметрии базового элемента в пределах нормируемого участка. Этот допуск определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базовой оси определяется в плоскости, проходящей через базовую ось перпендикулярно к плоскости симметрии. Позиционное отклонение наибольшее расстояние между реальным расположением элемента (его центра, оси или плоскости симметрии) и его номинальным расположением в пределах нормируемого участка. Позиционный допуск определяется в диаметральном и радиусном выражениях. Отклонения от пересечения осей наименьшее расстояние между осями, номинально пересекающимися. Радиальное биение разность наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении плоскостью, перпендикулярно к базовой оси. Радиальное биение является результатом совместного проявления отклонений от круглости профиля рассматриваемого сечения и отклонения его центра относительно базовой оси. Оно не включает в себя отклонение формы и расположения образующей поверхности вращения. Торцовое биение разность наибольшего и наименьшего расстояний от точек реального профиля торцовой поверхности до плоскости, перпендикулярной к базовой оси. Допуски формы и расположения указывают на чертежах согласно ГОСТ Вид допуска формы или расположения должен быть обозначен на чертеже знаком. Для допусков расположения и суммарных допусков формы и расположения дополнительно указывают базы, относительно которых задается допуск, и оговаривают зависимые допуски расположения или формы. Знак и значение допуска или обозначение базы вписывают в рамку допуска, разделенную на два или три поля, в следующем порядке (слева направо): знак допуска, значение допуска в миллиметрах, буквенное обозначение базы (баз). Рамки допуска вычерчивают сплошными тонкими линиями или линиями одинаковой толщины с цифрами. Высота цифр и букв, вписываемых в рамки, должна быть равна размеру шрифта размерных чисел. Допуски формы и расположения поверхностей выполняют предпочтительно в горизонтальном положении, при необходимости рамку располагают вертикально так, чтобы данные находились с правой стороны чертежа. 19

20 Линией, оканчивающейся стрелкой, рамку допуска соединяют с контурной или выносной линией, продолжающей контурную линию элемента, ограниченного допуском. Соединительная линия должна быть прямой или ломаной а ее конец, оканчивающийся стрелкой, должен быть обращен к контурной (выносной) линии элемента, ограниченного допуском в направлении измерения отклонения. В случаях, когда это оправдано удобствами выполнения чертежа, допускается: начинать соединительную линию от второй (задней) части рамки допуска; заканчивать соединительную линию стрелкой на выносной линии, продолжающей контурную линию элемента, и со стороны материала детали. Если допуск относится к поверхности или ее профилю (линии), а не к оси элемента, то стрелку располагают на достаточном расстоянии: от конца размерной линии. Если допуск относится к оси или плоскости симметрии определенного элемента, то конец соединительной линии должен совпадать с продолжением размерной линии соответствующего размера. При недостатке места на чертеже стрелку размерной линии можно заменить стрелкой выносной линии. Если размер элемента уже указан один раз на других размерных линиях данного элемента, используемых для обозначения допуска формы или расположения, то он не указывается. Размерную линию без размера следует рассматривать как составную часть этого обозначения. Если допуск относится к боковой поверхности резьбы, то рамку допуска соединяют. Если допуск относится к оси резьбы, то рамку допуска соединяют с размерной линией. Если допуск относится к общей оси или плоскости симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то соединительную линию проводят к общей оси. Величина допуска действительна для всей поверхности или длины элемента. Если допуск должен быть отнесен к определенной ограниченной длине, которая может находиться в любом месте ограниченного допуском элемента, то длину нормируемого участка в миллиметрах вписывают после значения допуска и отделяют от него наклонной линией. Если допуск задан таким образом на плоскости, данный нормируемый участок действителен для произвольного расположения и направления на поверхности. Если необходимо задать допуск по всему элементу и одновременно задать допуск на определенном участке, то второй допуск указывают под первым в объединенной рамке допуска. Если допуск должен относиться к нормируемому участку, расположенному в определенном месте элемента, то нормируемый участок обозначают и штрихпунктирной линией, ограничив ее размерами. Дополнительные данные пишут над или под рамкой допуска. Если необходимо для одного элемента задать два разных вида допуска объединяют и располагают их в рамке допуска. Если для поверхности надо одновременно указать обозначение допуска формы или расположения и буквенное обозначение поверхности, используемое для нормирования другого допуска, то рамки с обоими обозначениями располагают рядом на одной соедини- 20

21 тельной линии. Повторяющиеся одинаковые или разные виды допусков обозначаем одним и тем же символом, имеющие одни и те же значения и относящиеся к одним и тем же базам указывают один раз в рамке, от которой отходит одна соединительная линия, разветвляемая затем ко всем нормируемым элементам. Базы обозначают зачерненным треугольником, который линией соединяют с рамкой допуска. Треугольник, обозначающий базу, должен быть равносторонним с высотой, равной размеру шрифта размерных чисел. Если треугольник нельзя простым и наглядным способом соединить с рамкой допуска, то базу обозначают прописной буквой в рамке и эту букву вписывают в третье поле рамки допуска. Если базой является поверхность или прямая этой поверхности, а не ось элемента, то треугольник должен располагаться на достаточном расстоянии от конца размерной линии. Если базой является ось или плоскость симметрии, то треугольник располагают в конце размерной линии соответствующего размера (диаметра, ширины) элемента, при этом треугольник может заменить размерную стрелку. Если базой является общая ось или плоскость симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то треугольник располагают на общей оси. Если базой является только часть или определенное место элемента, то ее расположение ограничивают размерами. Если два или несколько элементов образует общую базу и их последовательность не имеет значения (например, они имеют общую ось или плоскость симметрии), то каждый элемент обозначают самостоятельно и обе (все) буквы вписывают подряд в третье поле рамки допуска. Если назначают допуск расположения для двух одинаковых элементов, и нет необходимости или возможности (у симметричной детали) различать элементы и выбрать один за базу, то вместо зачерненного треугольника используют стрелку. Таким образом, необходимо следующее: 1) измерение точности детали должно начинаться с измерения микронеровностей, затем должны измеряться микронеровности, отклонения от требуемого поворота и, наконец, точность расстояния или размера (если не предпринимать особых мер для исключения влияния соответствующих отклонений); 2) допуски на расстояния и размеры поверхностей детали должны быть больше допусков на величину отклонений от требуемого поворота поверхностей, которые, в свою очередь, должны быть больше допусков на микрогеометрические отклонения, а последние больше допусков на микрогеометрические отклонения, зависящие от назначаемого класса шероховатости поверхностей. Лекция 3. Рабочая документация технологического процесса Согласно ГОСТ Единой системы технологической документации (ЕСТД) «Комплектность документов в зависимости от типа производства» 21

22 документы, необходимые для описания технологических процессов, подбирают в зависимости от типа производства. Кроме вышеперечисленных видов технологических процессов по организации (единичной и типовой), ГОСТ установлено, что каждый вид технологического процесса по степени детализации содержания разделяется на маршрутный, операционный и маршрутнооперационный. Маршрутный технологический процесс процесс, выполняемый по документации, в которой излагается содержание операций без указаний переходов и режимов обработки. Операционный технологический процесс процесс, выполняемый по документации, в которой излагается содержание операций с указанием переходов и режимов обработки. Маршрутно-операционный процесс процесс, выполняемый по документации, в которой излагается содержание отдельных операций без указаний переходов и режимов обработки. Комплект форм документов общего назначения для технологического процесса может содержать: маршрутную карту (МК); операционную карту (ОК); карту эскизов (КЗ); ведомость деталей к типовому (групповому) технологическому процессу (операции) (ВТП, ВТО); сводную операционную карту (СОК) и др. Маршрутная карта (ГОСТ) содержит описание технологического процесса изготовления и контроля детали по всем операциям и технологической последовательности. В ней указывают соответствующие данные об оборудовании, оснастке, материальных и трудовых нормативах. В операционную карту вносят описание операции, расчлененной на переходы, с указанием оборудования, оснастки и режимов обработки. ОК применяют в серийном и массовом производстве. К комплекту ОК на все операции технологического процесса прилагают маршрутную карту. При проектировании операций для станков с ЧПУ составляют расчетно-технологическую карту, в которую заносят необходимые данные о траектории движения инструмента и режимах обработки. На основе этой карты разрабатывают управляющую программу станком. МК и ОК составляют на основе данных чертежей, производственной программы, спецификации, описания конструкций, технических условий и следующих руководящих и нормативных материалов: паспорта металлорежущих станков; каталогов станков, режущих и вспомогательных инструментов, альбомов нормальных приспособлений; руководящих материалов по режимам резания; нормативов подготовительно-заключительного и вспомогательного времени. МК имеет определенную форму. В ее верхнюю часть заносят данные об изготовляемой детали и заготовке, в нижнюю номер, наименование и содержание операций, а также необходимые для выполнения операций коды, наименования и данные станков, приспособлений, режущих и измерительных инструментов, указывают штучное время, число рабочих и подготовительно- 22


Нормирование точности и технические измерения Основные понятия о точности в машиностроении Точность это степень приближения значения параметра изделия, процесса и т. д. к его заданному значению. Точность

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР Единая система конструкторской документации УКАЗАНИЕ НА ЧЕРТЕЖАХ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ Unified system for design documentation. Representation of

Лекция 9 ДОПУСКИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТИ Модуль - 3, тема - 9 Цель: изучение принципов выбора допусков формы и расположения поверхностей, непосредственно связанных с обеспечением высокой эффективности

Имя ТЗ 1ТМ 2ТМ 3ТМ 4ТМ 5ТМ 6ТМ 7ТМ Тестовые задания для аттестации инженерно-педагогических работников ГБОУ НиСПО Дисциплина «Технология машиностроения» Специальность Технология машиностроения Формулировка

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ГОСТ 30893.2-2002. Основные нормы взаимозаменяемости. Общие допуски. Допуски формы и расположения поверхностей, не указанные индивидуально. Дата введения 1 января 2004 г. Взамен ГОСТ 25069-81 1 Область

«Смоленский промышленно-экономический колледж» Тесты по дисциплине «Технология машиностроительного производства» специальность 151001 Технология машиностроения Смоленск Уровень А 1. Массовое производство

Часть 1. Теоретические основы технологии машиностроения 1.1. Введение. Машиностроение и его роль в ускорении технического процесса. Задачи и основные направления развития машиностроительного производства.

ОБЩИЕ СВЕДЕНИЯ Цель изучение основных общетехнических терминов и понятий, необходимых в освоении знаний практической технологии и используемых при выполнении работ учебно-технологического практикума в

СТАНДАРТИЗАЦИЯ НОРМ, ВЗАИМОЗАМЕНЯЕМОСТЬ Взаимозаменяемость принцип конструирования и изготовления деталей, обеспечивающий возможность сборки и замены при ремонтах независимо изготовленных с заданной точностью

ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Понятие о производственном и технологическом процессах. Структура технологического процесса (ГОСТ 3.1109-83). Виды и типы производства. Технологические характеристики типов производства

Теоретическое задание заключительного этапа Всероссийской олимпиады профессионального мастерства обучающихся по специальности среднего профессионального образования 15.02.08 ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Вопросы

1 Цели и задачи дисциплины 1.1 Изучение основ технологической науки и практики. 1. Приобретение навыков разработки технологических процессов механическоой обработки деталей и сборки узлов автомобилей.

ВВЕДЕНИЕ 10 РАЗДЕЛ 1. МАШИНА КАК ОБЪЕКТ ПРОИЗВОДСТВА 12 1.1 Понятие машины и её служебного назначения 12 1.2 Технические параметры и параметры качества машины 13 1.3 Содержание и структура жизненного цикла

ГОСТ 24643-81. Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения. Дата введения 1 июля 1981 г. Взамен ГОСТ 10356-63(в части разд. 3) 1. Настоящий стандарт

ПРОГРАММА ВСТУПИТЕЛЬНЫЙ ИСПЫТАНИЙ по предмету «ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ» Введение Цели, задачи, предмет дисциплины, её роль и взаимосвязь с другими дисциплинами. Значение дисциплины в системе подготовки

ГОСТ 2.308-2011 Группа Т52 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Единая система конструкторской документации УКАЗАНИЯ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ Unified system of design documentation. Representation

СОДЕРЖАНИЕ Введение... 3 РАЗДЕЛ I. ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИЗДЕЛИЙ В МАШИНОСТРОЕНИИ Глава 1. Точность изделий и способы ее обеспечения в производстве... 7 1.1. Изделия машиностроительного

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет имени Г.В. Плеханова» ОСНОВЫ

Введение... 3 РАЗДЕЛ I. ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИЗДЕЛИЙ В МАШИНОСТРОЕНИИ Глава 1. Точность изделий и способы ее обеспечения в производстве... 7 1.1. Изделия машиностроительного производства

Т е м а 6. ОБРАБОТКА ОТВЕРСТИЙ Цель изучение технологических возможностей лезвийной обработки отверстий на вертикально сверлильных и координатно расточных станках, основных узлов станков и их назначения,

Разработка технологических процессов (ТП) механической обработки является сложной, комплексной, вариантной задачей, требующей учета большого числа разнообразных факторов. В комплекс кроме разработки собственно

Косилова А.Г. Справочник технолога-машиностроителя. Том 1 Автор: Косилова А.Г. Издательство: Машиностроение Год: 1986 Страниц: 656 Формат: DJVU Размер: 25М Качество: отличное Язык: русский 1 / 7 В 1-м

Т е м а 5. МНОГОИНСТРУМЕНТАЛЬНАЯ ОБРАБОТКА ЗАГОТОВОК Цель изучение технологических возможностей многоинструментальной обработки на токарно-револьверном станке, основных узлов станка и их назначения; приобретение

Вопросы для подготовки к рубежному контролю 3 по курсу «Инженерная графика» для студентов кафедры СМ-10 «Колесные машины» (четвертый семестр) 1-я группа вопросов 1. Дайте определение документа «Чертеж

Аннотация дисциплины «Технология конструкционных материалов» Направление подготовки 150700.62 Общая трудоемкость изучаемой дисциплины составляет 4 ЗЕТ(144 час.). Цели и задачи дисциплины: Целью дисциплины

Проект Утвержден приказом Министерства труда и социальной защиты Российской Федерации ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ СПЕЦИАЛИСТ ПО ТЕНОЛОГИЯМ МЕАНОСБОРОЧНОГО ПРОИЗВОДСТВА 2 ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ СПЕЦИАЛИСТ

ГОСТ 30893.2-2002 (ИСО 2768-2-89) Группа Г12 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Основные нормы взаимозаменяемости ОБЩИЕ ДОПУСКИ Допуски формы и расположения поверхностей, не указанные индивидуально Basic norms

РАЗМЕРЫ И ИХ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ На чертеже должно быть задано минимальное число но достаточное для изготовления и контроля изделия. Каждый размер на чертеже следует приводить лишь один раз. Размеры,

1 Цели и задачи дисциплины 1.1 Дать студентам основы знаний о современном машиностроительном производстве и технологических процессах изготовления изделий в машиностроении. 1.2 Дать базовые знания по специальным

ОГЛАВЛЕНИЕ Введение................................................................ 5 Глава 1. Основные понятия и определения.................................... 7 1.1. Производственный процесс в машиностроении.....................

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ. ОП.05 «Общие основы технологии металлообработки и работ на металлорежущих станках» Наименование разделов и тем Тема 1. Физические основы процесса резания

Аннотация к рабочей программе дисциплины «Технология конструкционных материалов» Цель преподавания дисциплины Целью дисциплины является получение студентами общеинженерной технологической подготовки, которая

АННОТАЦИЯ ДИСЦИПЛИНЫ «ВЗАИМОЗАМЕНЯЕМОСТЬ И НОРМИРОВАНИЕ ТОЧНОСТИ» Целью освоения дисциплины является: подготовка специалистов, способных решать задачи анализа, нормирования, стандартизации и контроля точности

ВОПРОСЫ, КОТОРЫЕ БЫЛИ ЗАДАНЫ НА ЗАЩИТЕ ДИПЛОМНЫХ ПРОЕКТОВ ПО РЕМОНТУ ОБОРУДОВАНИЯ 1.1 Техническая эксплуатация технологического оборудования 1. Опишите основной принцип действия узла своего станка. 2.

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОЦЕССА ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА МЕТАЛЛООБРАБАТЫВАЮЩЕГО СТАНКА Зайцев Роман Владимирович ФГУП «НПО Астрофизика», г.москва [email protected] Во время эксплуатации приходится

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ПРОФЕССИОНАЛЬНЫХ МОДУЛЕЙ программы подготовки специалистов среднего звена базовой подготовки по специальности среднего профессионального образования 15.02.08 «Технология машиностроения»

Лекция 5. Автоматизация управления технологическим процессом с целью повышения точности и производительности обработки Цели и желаемый результат. Изучить принцип работы системы управления с отрицательной

ПРАВИЛА НАНЕСЕНИЯ РАЗМЕРОВ НА ЧЕРТЕЖАХ ОГЛАВЛЕНИЕ 1. Понятие размеров на чертеже... 2 2. Виды размеров детали... 2 3. Размерные элементы... 3 4. Условные знаки... 6 5. Способы нанесения размеров... 8 6.

Министерство образования Нижегородской области ГБОУ СПО Нижегородский автотранспортный техникум М Е Т О Д И Ч Е С К О Е П О С О Б И Е По выполнению части дипломного проекта, связанной с разделом «Допуски

ОГЛАВЛЕНИЕ Список принятых сокращений.............................. 3 Предисловие............................................ 4 Введение............................................... 7 Глава первая Исходная

Объектами машиностроительного производства являются машины различного назначения. Технологический процесс изготовления машин предусматривает производство деталей, сборочных единиц (узлов) и изделий. Изделие

УДК 621.813 ВЛИЯНИЕ ЛЮНЕТОВ НА ТОЧНОСТЬ И КАЧЕСТВО ЗАГОТОВОК ПРИ ОБРАБОТКЕ ТОЧЕНИЕМ Власов М.В., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Технологии обработки материалов» Научный

Министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный машиностроительный

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ (КРАТКИЕ СВЕДЕНИЯ) Поверхность детали после механической обработки не бывает абсолютно гладкой, так как режущий инструмент оставляет на ней следы в форме микронеровностей выступов

КИНЕМАТИЧЕСКАЯ СХЕМА План 1. Правила выполнения схем 1.1. Общие требования к выполнению схем 1.2. Условные графические обозначения элементов 1.3. Позиционные обозначения элементов 1.4. Перечень элементов

Т е м а 13. ТОЧНОСТЬ ФОРМООБРАЗОВАНИЯ ПРИ РЕЗАНИИ Цель изучение взаимодействия инструмента и заготовки, видов отклонения формы поверхности заготовки, возникающих при резании; исследование влияния факторов

Глава 2 ВЫЯВЛЕНИЕ ТЕХНОЛОГИЧЕСКИХ РАЗ- МЕРНЫХ ЦЕПЕЙ При разработке технологических процессов изготовления деталей следует обязательно выявлять технологические размерные цепи (связи). Построение размерных

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет» Воткинский филиал Смирнов В.А. Методические

УДК 621.9.015 + 621.92.06-529 ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ОБРАБОТКИ ОТВЕРСТИЙ НА СТАНКАХ С ЧПУ С.П. Пестов Предложен подход к моделированию точности обработки отверстий концевыми мерными инструментами на

А. П. ОСИПОВ С. П. ПЕТРОВА ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ Учебное пособие Самара Самарский государственный технический университет 2014 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Т е м а 1. КИНЕМАТИЧЕСКИЕ ОСНОВЫ ФОРМООБРАЗОВАНИЯ РЕЗАНИЕМ Цель изучение кинематики формообразования поверхностей резанием, основных элементов и геометрических параметров режущего инструмента. Содержание

УДК 621.01 ТЕОРИЯ И ПРАКТИКА БАЗИРОВАНИЯ В МЕХАНООБРАБОТКЕ В.Г. Прохоров, Г.И. Рогозин Точность обработки на металлорежущих станках обусловлена воздействием многочисленных случайных факторов, среди которых

1. Понятие размеров на чертеже Одной из важнейших составляющих чертежа являются размеры. Размер число, характеризующее величину отрезка прямой, дуги или угла. Размеры на чертежах проставляют так, чтобы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЙ ТЕХНИЧЕСКИПЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПОДГОТОВКИ ИНЖЕНЕРНЫХ КАДРОВ Кафедра «Технология машиностроения» Технология машиностроения

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Общие основы технологии металлообработки и работ на металлорежущих станках СОДЕРЖАНИЕ стр. 1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4. СТРУКТУРА И СОДЕРЖАНИЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

В. А. Ермолаев

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ

для студентов высших учебных заведений

Москва 2011

УДК 669.018.29.004.14(075.8) ББК 34.5я 73 Е-74

Ермолаев В. А. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ. Конспект лекций. М.: НИЯУ МИФИ, 2011. – 264 с.

Рассмотрены современные и перспективные технологические способы производства чёрных и цветных металлов, изготовление заготовок и деталей машин из металлов и неметаллических материалов: литьём, обработкой добавлением, сваркой, резанием и другими способами.

Пособие предназначено для студентов очной, вечерней и заочной форм обучения по специальности 151001 – Технология машиностроения.

Подготовлено в рамках Программы создания и развития НИЯУ МИФИ.

Рецензент: В.С. Гацков , канд. техн. наук, доцент НГТИ

Редактор Е.Н. Кочубей

Макет подготовлен к печати Е.Н. Кочубей

Национальный исследовательский ядерный университет «МИФИ». 115409, Москва, Каширское шоссе, 31.

ООО «Полиграфический комплекс «Курчатовский». 144000, Московская область, г. Электросталь, ул. Красная, д. 42

Тема 1. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ

В МАШИНОСТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ................................

1.1. Понятие о технологии........................................................................

1.2. Изделие как объект производства....................................................

1.3. Обработка деталей...........................................................................

Тема 2. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ

В МАШИНОСТРОЕНИИ..........................................................................

2.1. Производство чугуна.......................................................................

2.2. Производство стали.........................................................................

2.3. Производство цветных металлов....................................................

Вопросы для самоконтроля...................................................................

Тема 3. ЛИТЕЙНОЕ ПРОИЗВОДСТВО.................................................

3.1. Литье металлов как технологический процесс..............................

3.2. Литейные формы и их конструкции...............................................

3.3. Получение отливок..........................................................................

3.4. Методы литья и области их применения.......................................

Тема 4. ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ................................

4.1. Сущность обработки металлов давлением....................................

4.2. Классификация процессов обработки металлов

давлением и их краткая характеристика........................................

4.3. Прокатывание (прокат) металлов...................................................

4.4. Прессование металлов...................................................................

4.5. Волочение металлов......................................................................

4.6. Ковка металлов...............................................................................

4.7. Объемная штамповка металла.....................................................

4.8. Листовая (плоская) штамповка.....................................................

Вопросы для самопроверки..................................................................

Тема 5. ПОНЯТИЕ О ТЕХНОЛОГИИ ПОРОШКОВОЙ

МЕТАЛЛУРГИИ......................................................................................

5.1. Метод технологии порошковой металлургии.............................

5.2. Прессование металлических порошков.......................................

Вопросы для самоконтроля..................................................................

Тема 6. ОСНОВНЫЕ ПОНЯТИЯ О СВАРКЕ МЕТАЛЛОВ................

6.1. Общие сведения. Развитие сварки, ее направления

и классификация............................................................................

6.2. Виды сварных соединений............................................................

6.3. Подготовка металла под сварку....................................................

6.4. Электрическая сварочная дуга.....................................................

6.5. Металлургические процессы при сварке.....................................

6.6. Электроды для дуговой сварки.....................................................

6.7. Оборудование для сварки металлов.............................................

Вопросы для самоконтроля..................................................................

Тема 7. ВИДЫ СВАРКИ..........................................................................

7.1. Ручная дуговая сварка...................................................................

7.2. Автоматическая и полуавтоматическая сварки...........................

7.3. Газовая сварка................................................................................

7.4. Кислородная резка.........................................................................

Вопросы для самоконтроля..................................................................

Тема 8. МЕХАНИЧЕСКАЯ ОБРАБОТКА ЗАГОТОВОК

РЕЗАНИЕМ...............................................................................................

8.1. Методы обработки заготовок резанием.......................................

8.2. Обработка заготовок на токарных станках с ЧПУ......................

Вопросы для самоконтроля..................................................................

Тема 9. ЭЛЕКТРОФИЗИЧЕСКИЕ, ЭЛЕКТРОХИМИЧЕСКИЕ

И ТЕРМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ДЕТАЛЕЙ....................

9.1. Характеристика электрофизических

и электрохимических методов обработки...................................

9.2. Термическая обработка в технологическом

процессе изготовления изделий....................................................

Вопросы для самоконтроля..................................................................

Тема 10. ИЗНОСОСТОЙКИЕ И АНТИКОРРОЗИОННЫЕ

ПОКРЫТИЯ..............................................................................................

Вопросы для самоконтроля..................................................................

Тема 11. ПАЯНЫЕ И КЛЕЕВЫЕ СОЕДИНЕНИЯ................................

11.1. Пайка.............................................................................................

11.2. Склеивание...................................................................................

Вопросы для самоконтроля..................................................................

Тема 12. ТЕХНОЛОГИЧЕСКАЯ ПОДГОТОВКА

ПРОИЗВОДСТВА ИЗДЕЛИЙ.................................................................

12.1. Цели и задачи технологической подготовки

производства.................................................................................

12.2. Технологическая документация.................................................

12.3. Методы обеспечения технологичности

и конкурентоспособности изделий машиностроения................

Вопросы для самоконтроля..................................................................

Литература................................................................................................

Тема 1. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ

Предметом курса «Технологические процессы в машиностроительном производстве» (ТПМ) являются современные рациональные и распространенные в промышленности прогрессивные способы формообразования заготовок и деталей машин.

Курс ТПМ занимает в становлении современного инженерамашиностроителя особое место, так как в последующем инженер должен реализовать в металле различные конструкции машин.

Создавая конструкции машин и приборов, обеспечивая на практике их заданные характеристики и надежность работы с учетом экономических показателей, инженер должен уверенно владеть методами изготовления деталей машин и их сборки. Для этого он должен обладать глубокими технологическими знаниями.

1.1. Понятие о технологии

Технологический процесс определяется как:

1) совокупность производственных методов и процессов в определенной отрасли производства, а также научное описание спосо-

бов производства (Ожегов С.И. Толковый словарь русского языка);

2) совокупность методов изготовления, обработки, изменения свойств, состояния, формы сырья, полуфабриката, материала, осуществляемых в процессе производства продукции (Васюков И.А. Словарь иностранных слов).

В обоих определениях фигурирует ключевые слова – производ-

ственные, производства, и это вполне логично, ведь уровень жизни людей в современном обществе определяется эффективностью производства!

Первоочередной задачей отечественной экономики является по-

вышение производительности труда и качества выпускаемой про-

дукции . Это может быть достигнуто на основе высокоэффективных технологий.

Развитие и совершенствование любого производства в настоящее время связано с его автоматизацией, созданием робототехни-

ческих комплексов, широким использованием вычислительной техники, применением станков с ЧПУ. Все это составляет базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация технологических процессов и режимов обработки, создание гибких производственных систем.

Важным направлением научно-технического прогресса является также создание и широкое использование новых конструкционных материалов. В производстве широко применяют сверхчистые, сверхтвердые, жаропрочные, композиционные, порошковые, полимерные и другие материалы, позволяющие резко повысить технический уровень и надежность оборудования. Например, космический корабль «Буран» облицован термостойким композиционным материалом, легким и прочным, выдерживающим t > 1000 ° C; у атомной подлодки «Курск» стенки корпуса толщиной 200 мм из титана – твердого, прочного и легкого материала; в обрабатывающей промышленности используются ВОК – искусственные алмазы.

1.2. Изделие как объект производства

Изделия машиностроения и их составные части. Изделием

в машиностроении называется любой предмет производства, подлежащий изготовлению на предприятии. Изделием может быть машина, ее элементы в сборе и даже отдельная деталь в зависимости от того, что является продуктом конечной стадии данного производства. Например, для автомобильного завода изделием является автомобиль, для карбюраторного завода – карбюратор, для автоматического завода поршней – поршень.

Деталь – это изделие (составная часть изделия), изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали – отсутствие в ней разъемных и неразъемных соединений. Деталь – это первичный сборочный элемент каждой машины.

Сборочная единица – это изделие, составные части которого подлежат соединению. Характерным признаком составной части изделия с технологической точки зрения является возможность ее сборки обособленно от других элементов изделия. Составная часть

в зависимости от конструкции может состоять либо из отдельных

деталей, либо из составных частей высших порядков и деталей. Различают составные части первого, второго и более высоких порядков. Составная часть первого порядка входит непосредственно в составную часть изделия. Она состоит либо из отдельных деталей, либо из одной или нескольких составных частей второго порядка и деталей. Составная часть второго порядка входит в составную часть первого порядка. Она расчленяется на детали или на составные части третьего порядка и детали и т.д., составная часть, наивысшего порядка расчленяется только на детали. Рассмотренное деление изделия, на составные части производится по технологическому признаку.

Существует другое деление, когда изделие расчленяется на составные части по функциональному признаку. К ним можно, например, отнести механизм газораспределения двигателя, систему его смазки или охлаждения. Эти составные части изделия не являются сборочными с технологической точки зрения, так как их в большинстве случаев нельзя обособлено и полностью собрать отдельно от других элементов изделия. Деление изделия на составные части и оформление чертежей и других технических документов в машиностроении дано в ГОСТ 2.101–68.

В современном машиностроении сборка расчленяется на общую

и узловую. Объектом общей сборки является изделие, объектом узловой сборки являются его составные части.

Служебное назначение изделия. Под служебным назначени-

ем машины понимают четко сформулированную конкретную задачу, для решения которой предназначена машина.

Формулировка служебного назначения машины должна содержать подробные сведения, конкретизирующие общую задачу и уточняющие условия, при которых эта задача может быть решена. Так, формулируя служебное назначение автомобиля, недостаточно сказать, что автомобиль предназначен для перевозки грузов. Необходимо конкретизировать характер грузов, их массу и объем, условия, расстояния и скорость перевозки, состояние дорог, климат, требования к внешнему виду автомобиля и многое другое с тем, чтобы исчерпывающе определить именно ту задачу, которую должен выполнять создаваемый автомобиль.

Служебное назначение машины описывают не только словесно, но и системой количественных показателей, определяющих ее конкретные функции, условия работы и ряд дополнительных моментов в соответствии с задачей, которую предстоит решать с помощью создаваемой машины. Формулировка служебного назначения машины является важнейшим документом в задании на ее проектирование.

Показатели качества изделия. Под качеством машины по-

нимают совокупность ее свойств, обусловливающих способность выполнять свое служебное назначение. К показателям качества машины можно отнести лишь то, что характеризует меру полезности машины, т.е. ее способность удовлетворять потребности людей в соответствии со своим назначением. Такими показателями являются качество продукции, производимой машиной, производительность машины, ее надежность, долговечность физическая и моральная, безопасность работы и удобство управления, уровень шума, коэффициент полезного действия, степень механизации и автоматизации, техническая эстетичность и т.п.

В проектирование машины, ее изготовление, эксплуатацию, техническое обслуживание и ремонты вкладывается конкретный труд. Создание машины, ее эксплуатация, обслуживание и ремонты сопряжены с использованием энергии, технических средств и материалов. Все вместе взятое образует стоимостное свойство машины – ее экономичность. Показателем Э экономичности машины может служить сумма затрат на проектирование Зпр , изготовление Зизг , эксплуатацию Зэ , техническое обслуживание Зт.о и ремонты Зрем , отнесенная к количеству N продукции, произведенной за период ее службы:

Э = З пр +З изг +З э +З т.о +З рем .

Между показателями качества и экономичности машины существуют связи, приводящие к влиянию одних на другие. Например, повышение качества машины по любым показателям сопряжено с увеличением ее стоимости. Но в то же время повышение уровня такого показателя качества, как надежность машины, сократит за-

траты труда на устранение отказов, техническое обслуживание и ремонты. Потребление машиной энергии, топлива, материалов при эксплуатации, в известной мере характеризующее экономичность машины, во многом зависит от качества ее изготовления и т.п.

Наличие связей между показателями качества и экономичности не означает свободу отнесения того или иного показателя к любой из категорий. Возможность такой свободы исключается принципиальным различием между показателями качества и экономичности. Первые из них отражают степень пригодности, полезности, наконец, те блага, которые извлекает человек, используя машину, вторые – цену этих благ, их стоимость.

Качество машины обеспечивается уровнем проектных решений, от которого зависит техническое совершенство конструкции машины, и технологией, определяющей качество деталей, сборки и отделки машины (рис. 1.1).

Экономичность машины находится в более сложной зависимости от технического совершенства конструкции машины и технологии ее изготовления. Например, стоимость машины зависит от качества, количества и стоимости материалов, выбранных конструктором в процессе проектирования. Однако конечные затраты на материалы, входящие в себестоимость, можно определить лишь после осуществления технологического процесса ее изготовления.

Уровень унификации и технологичности машины определяет конструктор. Но влияние этих факторов на себестоимость машины проявляется не прямым путем, а через технологию ее изготовления. Влияние этих же факторов скажется и на затратах по техническому обслуживанию и ремонту машины. Такие экономические показатели, как потребление машиной энергии, топлива и материалов в процессе эксплуатации, в первую очередь, зависят от качества конструкторских решений. Однако на значения этих показателей влияет качество реализации технологического процесса и т.д.

Таким образом, обеспечение качества и экономичности машины процессе ее создания является общей задачей конструктора и технолога. Ее успешное решение возможно при тесном сотрудничестве и взаимопонимании друг с другом.

Рис. 1.1. Совокупности свойств, определяющих качества и экономичность машины

Тольяттинский государственный университет

Кафедра «ОТМП»

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ

(курс лекций дисциплины)

заочной формы обучения ст. направления «Технология машиностроения»

Тольятти 2010

1. ПРЕДМЕТ «ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ». ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

1.1. Предмет «ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ»

Слово «технология» имеет греческое происхождение и состоит из двух слов: «techne»- мастерство, умение и «logos» - учение. Таким образом, дословно, «технология» -это учение о мастерстве.

Как отрасль техники технология -это совокупность приемов и спо­собов получения, обработки или переработки сырья, материалов, заготовок или изделий.

Технологию рассматривают применительно к конкретной отрасли производства, например, технология машиностроения, технология двигателестроения, технология строительства, технология автострое­ния, технология горных работ, технология приборостроения и т.д.

Технология машиностроения -это совокупность приемов и способов механической обработки и сборки изделий в машиностроении.

Главнейшей задачей технологии машиностроения является изучение закономерностей построения технологических процессов, которые обеспе­чивали бы заданную производительность, точность и качество обработки и сборки.

Различают следующие этапы подготовки к производству:

ЭТАП I.Конструкторская подготовка производства.

При его выполнении отвечают на вопрос:

Что делать? (конструкция детали, узла и т.п., ее назначение, материал, термообработка и т.д.).

Первый этап выполняется конструкторами, которые при необходи­мости привлекают к работе технологов, экономистов, дизайнеров и т.д.

Цель первого этапа -создание конструкторской документации, необ­ходимой для изготовления изделия.

ЭТАП II.Технологическая подготовка производства.

При его выполнении отвечают на вопросы:

Из чего делать? (способ получения заготовки, ее конструкция).

Как делать? (технология).

На чем делать? (оборудование).

Чем делать? (инструмент).

Где делать? (организация производства).

Второй этап выполняется технологами.

Цель второго этапа -анализ конструкции изделия на технологичность и разработка технологического процесса его изготовления.

1.2. Основные понятия и определения

Изделием называется единица промышленной продукции в конечной стадии для данного производства. Исчисляется в штуках.

В зависимости от назначения различают изделия основного и вспо­могательного производств.

В основном производстве изготавливаются изделия, предназначен­ные для реализации другим потребителям.

Во вспомогательном производстве изготавливаются изделия, предназначенные только для внутреннего потребления.

Обычно изделия состоят из деталей.

Деталь - это изделие, или его часть, изготовленное из однородного материала без применения сборочных операций.

Заготовка - это предмет производства, из которого путем изменения формы, размеров, шероховатости поверхности и свойств материала изго­тавливают деталь.

Исходная заготовка - это заготовка перед первой технологической операцией механической обработки.

Различают следующие основные виды механической обработки:

1. Обработка резанием (происходит снятие стружки).

2. Обработка давлением (без снятия стружки).

3. Термическая обработка (изменение структуры и свойств заготовки с ис­пользованием теплового воздействия).

4. Электрофизическая обработка (изменение размеров и свойств заготовки с использованием непосредственно электрического тока).

5. Лучевая обработка (изменение размеров и свойств заготовки с использо­ванием энергии излучения).

Для превращения исходного материала в готовое изделие необходи­мо выполнить различные действия. Например, получить заготовку, провес­ти механическую и термическую обработку, провести контроль качества и размеров, осуществить транспортировку заготовок от одного рабочего места к дру­гому, организовать подачу электричества, сжатого воздуха, воды и т.д. Все это части производственного процесса.

Производственный процесс -совокупность всех действий, необходи­мых для превращения исходного материала в готовое изделие.

Производственный процесс изготовления машины состоит из техно­логических процессов различных видов работ: технологический процесс механической обработки, технологический процесс сборки, технологиче­ский процесс термообработки и т.д.

Технологический процесс механической обработки -это совокуп­ность действий по изменению размеров, формы и свойств заготовки.

Технологический процесс состоит из технологических операций.

Технологическая операция -это законченная часть технологического процесса, выполняемая на одном рабочем месте.

Рабочее место -это часть площади цеха, на которой размещено обо­рудование, оснастка и инструмент для выполнения одной технологической операции.

В операции обработки резанием включаются все действия рабочего, связанные с управлением станком, все автоматические движения механиз­мов станка, все вспомогательные действия по установке, закреплению и снятию заготовок со станка и т.п.

Технологические операции являются основным элементом произ­водственного планирования.

Операциям присваивается порядковый номер (005, 010, 015и т.д.) и дается наименование в зависимости от применяемого оборудования (токарно-револьверная, сверлильная, фрезерная и т.п.)

Для выполнения технологического процесса необходимы средства производства. Они включают: технологическое оборудование, технологи­ческую оснастку и режущий инструмент.

Технологическое оборудование - это средства производства, необхо­димые для выполнения операций по обработке заготовок (металлорежущие станки, прессы, термические печи и т.д.).

Технологическая оснастка - это вспомогательные устройства, добав­ляемые к технологическому оборудованию для выполнения определенных операций (приспособления для закрепления заготовки и режущего инстру­мента, контрольные приспособления и т.д.).

Режущие инструменты - это орудия производства, используемые для осуществления процесса обработки заготовок на станках.

Режущие инструменты можно разделить на две группы:

1. Лезвийные инструменты, имеющие четко выраженную режущую кромку (токарные и строгальные резцы, сверла, метчики, развертки, протяжки и т.д.).

2. Абразивные инструменты, у которых форма режущих зерен имеет случайный характер (шлифовальные круги, хонинговальные бруски, полирующий ин­струмент и т.д.).

Технологические процессы в машиностроении Лекция 1 ВВЕДЕНИЕ Н. А. Денисова, доцент кафедры машиностроения, канд. пед. наук

План лекции 1 Краткая характеристика изучаемой дисциплины 2 Классификация технологических процессов 3 Основные понятия и определения

Краткая характеристика изучаемой дисциплины Технология – это наука о методах, с помощью которых можно реализовать производственный процесс с целью получения готового изделия с параметрами качества, обеспечивающими требуемые его эксплуатационные свойства. Частью производственного процесса применительно к машиностроению является технологический процесс, или определенная последовательность действий, необходимая для получения конструкционных материалов, заготовок, деталей, комплектов, агрегатов и машин в целом с заданными параметрами качества l

Краткая характеристика изучаемой дисциплины l Цель изучения дисциплины – освоить терминологию и методологию, используемые при проектировании технологических и производственных процессов в машиностроении, а также при их реализации на производственных предприятиях.

Классификация технологических процессов Технологические процессы классифицируют по четырем признакам: l Формообразование l Параметры качества l Производительность изготовления изделий или партии изделий l Себестоимость изготовления изделий.

Классификация технологических процессов По признаку «Формообразование» вся технология конструкционных материалов делится на этапы – переделы: l l Металлургия (производство металлов и сплавов) Производство заготовок (литье, обработка давлением, сварка, методы порошковой металлургии) Механическая обработка (методы резания, поверхностное пластическое деформирование) Сборочное производство (создание подвижных и неподвижных соединений деталей механическими, электрическими способами, сваркой…)

Классификация технологических процессов Признак «Параметры качества» характеризуется группами качества, в числе которых: химический состав l структура и физико-механические свойства основного объема заготовки или детали и их поверхностных слоев l геометрическая форма l точность размеров, формы и взаимного расположения поверхностей l микрогеометрия поверхности l

Классификация технологических процессов l Признак «Производительность изготовления изделий или партии изделий» характеризуется временем, необходимым для изготовления изделия или партии изделий l Характеристикой признака «Себестоимость изготовления изделия» являются суммарные затраты на изготовление одного изделия.

Технологический процесс l Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда l Технологический процесс – это совокупность методов обработки: изготовления, изменения состояния, свойств, формы, сырья, материалов, – осуществляемых в процессе производства продукции

Основные понятия и определения Термин Определение ОБЩИЕ ПОНЯТИЯ 1. Технологический процесс Процесс D. Technologischer Prozeß Fertigungsablauf Е. Manufacturing process F. Precédé de fabrication 2. Технологическая операция Операция D. Operation; Arbeitsgang Е. Operation F. Opération Часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Примечания: 1. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования и сборки. 2. К предметам труда относятся заготовки и изделия. Законченная часть технологического выполняемая на одном рабочем месте процесса,

Основные понятия и определения 3. Технологический метод Метод 4. Технологическая база D. Technologische Basis 5. Обрабатываемая поверхность D. Zu bearbeitende Fläche Совокупность правил, определяющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, перемещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, установленных безотносительно к наименованию, типоразмеру или исполнению изделия Поверхность, сочетание поверхностей, ось или точка, используемые для определения положения предмета труда в процессе изготовления. Примечание. Поверхность, сочетание поверхностей, ось или точка принадлежат предмету труда. Поверхность, подлежащая обработки. воздействию в процессе

Основные понятия и определения 6. Технологический документ Документ D. Technologisches Dokument 7. Оформление технологического документа Оформление документа Графический или текстовый документ, который отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия Комплекс процедур, необходимых для подготовки и утверждения технологического документа в соответствии с порядком, установленным на предприятии. Примечание. К подготовке документа относится его подписание, согласование и т. д.

Основные понятия и определения 97. Материал Исходный предмет труда, изготовления изделия потребляемый для 98. Основной материал D. Grundmaterial E. Basic material F. Matière première Материал исходной заготовки. Примечание. К основному материалу относится материал, масса которого входит в массу изделия при выполнении технологического процесса, например материал сварочного электрода, припоя и т. д. 99. Вспомогательный материал D. Hilfsmaterial E. Auxiliary material F. Matière auxiliaire Материал, расходуемый при выполнении технологического процесса дополнительно к основному материалу. Примечание. Вспомогательными могут быть материалы, расходуемые при нанесении покрытия, пропитке, сварке (например, аргон), пайке (например, канифоль), закалке и т. д.

Основные понятия и определения 100. Полуфабрикат D. Halbzeug E. Semi-finished product F. Demi-produit Предмет труда, подлежащий дальнейшей обработке на предприятии-потребителе 101. Заготовка D. Rohteil E. Blank F. Ebauche Предмет труда, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь 102. Исходная заготовка D. Anfangs-Rohteil E. Primary blank F. Ebauche première Заготовка перед первой технологической операцией 103. Листоштампованное изделие Деталь или заготовка, изготовленная методом листовой штамповки

Основные понятия и определения (Измененная редакция, Поправка, ИУС 6 -91) 104. Отливка D. Gußstück E. Casting 105. Поковка D. Schmiedestück E. Forging Изделие или заготовка, полученные технологическим методом литья Изделие или заготовка, полученные технологическими методами ковки, объемной штамповки или вальцовки. Примечания: 1. Кованая поковка - поковка, полученная технологическим методом ковки. 2. Штампованная поковка - поковка, полученная технологическим методом объемной штамповки. 3. Вальцованная поковка - поковка, полученная технологическим методом вальцовки из сортового проката. (Измененная редакция, Поправка, ИУС 6 -91) 106. Изделие По ГОСТ 15895 -77

Основные понятия и определения 107. Комплектующее изделие Изделие предприятия-поставщика, применяемое как составная часть изделия, выпускаемого предприятиемизготовителем. Примечание. Составными частями изделия могут быть детали и сборочные единицы 108. Типовое изделие D. Typenwerkstück Е. Typified workpiece F. Pièce type Изделие, принадлежащее к группе изделий близкой конструкции, обладающее наибольшим количеством конструктивных и технологических признаков этой группы 109. Сборочный комплект D. Montagesatz E. Assembly set F. Jeu de montage Группа составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части

ИСПОЛЬЗУЕМЫЕ ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ ГОСТ 3. 1109 -82 Термины и определения основных понятий Гоцеридзе, Р. М. Процессы формообразования и инструменты: учебник для студ. учреждений сред. проф. образования / Р. М. Гоцеридзе. – М. : Издательский центр «Академия» , 2007. – 384 с. 3. Материаловедение и технология конструкционных материалов: учебник для студ. в. учеб. заведений / В. Б. Арзамасов, А. Н. Волчков, В. А. Головин и др. ; под ред. В. Б. Арзамасова, А. А. Черепахина. – М. : Издательский центр «Академия» , 2007. – 448 с. 4. Основы механосборочного производства: Учебное пособие для машиностр. спец. вузов А. Г. Схиртладзе, В. Г. Осетров, Т. Н. Иванова, Г. Н. Главатских. – М: ИЦ МГТУ «Станкин» , 2004. – 239 с. 5. Схиртладзе, А. Г. Проектирование нестандартного оборудования: учебник / А. Г. Схиртладзе, С. Г. Ярушин. – М. : Новое знание, 2006. – 424 с. 1. 2.

Понравилась статья? Поделиться с друзьями: